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INTRO 
Power limitations of scalable systems 
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Power Limitations of 
Scalable Systems 
•  Current HPC systems are limited in scale due to hardware, 

software and power [facilities] 
•  Power has become a first order driver to scaling HPC 

platforms to the next major milestone 
•  P. Kogge (editor). “Exascale Computing Study: Technology Challenges in 

Achieving Exascale,” Univ. of Notre Dame, CSE Dept. Tech Report TR-2008-13, 
Sept. 28, 2008.  

•  Classic research on power has focused on:  
•  Power monitoring: hardware and software techniques 
•  Power scaling: largely reactive hardware and software techniques to meter 

power usage 

•  We present a tertiary area of research associated with 
classifying the power performance of scalable parallel 
algorithms 
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How scalable can my algorithm execute in terms of 

my facilities? 



ENERGY PERFORMANCE 
SCALING 

Governing equations behind determining energy performance efficiency 
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Energy Performance 
Equations 
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(1) EPp = EAvgp / Tp ; where EAvg = average peak power and T = runtime 

(2) EPP = (EAvgs + max(EAvgp)) / (Ts + max(Tp))  
 

       where {Ts, EAvgs} = Sequentual code; {Tp,EAvgp} = Parallel code 

(3) EAvgp =          p 
       
       where PPL’n is the Peak Power from one component power plane  

(3) EPP =  (             s +  max(         p )) / ( Ts + max(Tp)  )  

(4) Scaling; S(EPP) = EPP / EP1  

           where EPP = energy performance quantity for a given problem size 
                    using P parallel units  
                  EP1 = energy performance quantity for a given problem size 
                     using 1 parallel unit 

The governing equations for quantifying Energy Performance [EP] can 
be described as follows:   



Energy Performance Scaling 
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•  Linear Scaling 
•  Best possible scenario 

where power and 
performance scaling are 
identical 

•  Ideal Scaling 
•  Power scales at a rate 

less than performance 
scaling, or 

•  Performance is 
significantly sub-linear 

•  Superlinear Scaling 
•  Power scales at a rate 

greater than 
performance scaling 



ALGORITHMIC TECHNIQUES 
Matrix multiplication methodologies  
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Algorithmic Techniques  

•  We utilize classic double precision, 
square matrix multiplication as the 
basis for our research 
•  BLAS: DGEMM 

•  We choose three algorithmic 
techniques:  
•  OpenBLAS [CBLAS]: Parallel Blocked (Tiled) 
•  Classic Strassen-Winograd: Recursive operation 

reduction 
•  Communication Avoiding Parallel Strassen 

[CAPS]: Two-stage recursive operation and 
communication reduction 

•  Known Issues?  
•  Parallel Strassen techniques require sufficiently 

large problems in order to meet or exceed the 
performance of blocked techniques 

•  Strassen has different numerical stability than 
blocked techniques  
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OpenBLAS: Blocked Matmul 

•  Classic method to partition 
matrices into bxb sub-blocks 
•  Optimize the locality of the respective 

sub-blocks by prefetching into “fast” 
memory 

•  Excellent scaling on 
architectures with multi-level 
caches 
•  Excellent performance characteristics 

even with large systems 
•  Limited in performance to the theoretical 

peak of the system 
•  Still an N3 algorithm   

•  Very power hungry 
•  Largest portions of the processor are 

frequently utilized: cache 

•  OpenBLAS Implementation 
•  Solver written in assembly 
•  Utilizes SIMD units [AVX2] 
•  Utilizes OpenMP worksharing 
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Strassen-Winograd 

•  Recursive method to multiply 
square matrices 

•  Method: 
•  Recursively partitions matrix and 

performs a series of 7 sub-matrix 
computations 

•  Cutoff threshold triggers a switch to a 
dense solver [traditional n3] 

•  Possible to exceed theoretical peak 
performance 

•  Requires sufficiently large problems 

•  Implementation based upon 
Barcelona OpenMP Task Suite 
Strassen 
•  Utilizes OpenMP Tasks for parallelism 

across threads 
•  Manually unrolls dense loops for good 

SIMD utilization  
•  Cutoff threshold of N’=64 
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Q1 = (A11 + A22) * (B11 +B22) 
Q2 = (A21 + A22) B11  
Q3 = A11 * (B12 – B22) 
Q4 = A22 * (B21 – B11) 
Q5 = (A11 + A12) * B22 
Q6 = (A21 – A11) * (B11 + B12) 
Q7 = (A12 – A22) * (B21 + B22) 
  
C11 = Q1 + Q4 – Q5 + Q7 
C12 = Q3 + Q5 
C21 = Q2 + Q4 
C22 = Q1 – Q2 + Q3 + Q6  

Reducing operation count by trading 
multiplication for recursive addition 



Communication Avoiding 
Parallel Strassen [CAPS] 
•  Derived from Strassen-

Winograd and 2.5D 
techniques 
•  Recursive implementation of 

Strassen 
•  Represents matrix partitioning as 

a tree rather than tiles 

•  At each recursive depth, 
decide whether to use 
breadth-first or depth-first 
parallelism 
•  BFS: All 7 sub-problems executed 

in parallel [OpenMP Task] 
•  DFS: Each sub-problems executed 

sequentially, with parallelism 
[OpenMP Worksharing] 
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We modify our Strassen implementation from 

BOTS and utilize a cutoff depth of 4 



ALGORITHMIC 
EXPERIMENTS 

Test infrastructure, performance data and power data 
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Test Platform 

•  Hardware 
•  Lenovo TS140 server 
•  Intel Xeon E3-1225 [Haswell]; Quad core  

 3.2Ghz; 8MB cache 
•  DDR3-PC3-12800 DIMM w/ 4GB capacity 
•  Power saving features disabled in BIOS  

•  Disables frequency scaling 

•  Software 
•  OpenSUSE 13.1; kernel: 3.11.10-7 x86_64 
•  GNU GCC 4.8.1 20130909 

•  Use –march=avx2 where possible 

•  Barcelona OpenMP Task Suite 1.1.2 [modified] 
•  OpenBLAS 0.2.8.0 
•  PAPI 5.3.0 

•  Built with support for Intel RAPL: 

•  http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:RAPL_Access 14 



Algorithmic Experiments 

•  Strassen_P Driver 
•  Drives all tests using identical memory allocation 
•  Initializes PAPI performance and power monitoring 
•  Forces 60sec sleep period between tests  

•  Matrix Problem Sizes [NxN] 
•  N = {512, 1024, 2048, 4096} 
•  Larger problems are possible with OpenBLAS 
•  Strassen requires additional buffer space 

•  Parallelism 
•  Utilizes OpenMP thread counts = {1, 2, 3, 4} 
•  OpenMP configured using OMP_NUM_THREADS environment variable 

•  Power Measurement 
•  Power measured from within the driver using the PAPI RAPL component 
•  Requires special permission to access system registers 
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Performance 
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Performance 
differential between 

OpenBLAS and 
Strassen is expected 



Power 
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Significant power 
differential between 

OpenBLAS and 
Strasssen 



ENERGY PERFORMANCE 
SCALING 

Utilizing our governing equations, examine our algorithmic efficiency 
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Energy Performance 
Scaling: S(EPP) 
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OpenBLAS is 
superlinear 

Strassen is ideal 



Conclusions 
•  Governing equations to classify algorithmic 

complexity in terms of its energy performance 
efficiency: EPP 

•  Performance 
•  OpenBLAS achieves highest performance on our SMP platform 
•  CAPS is on average 5.97% faster than Strassen on our platform  

•  Power 
•  OpenBLAS has the highest overall power 
•  CAPS has an average power improvement of 2.59% over Strassen 

•  Energy Performance Scaling 
•  OpenBLAS implementation is superlinear: power scales at a faster rate 

than performance 
•  Strassen and CAPS fall within the ideal range 
•  CAPS is slightly closer to the linear scale 
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Conclusion: CAPS provides the best EPP scaling 
of all three approaches.   



Future Work 

•  Additional Platform Measurement 
•  Additional testing on more scalable Haswell systems 
•  Measurement on forthcoming Skylake systems 
•  How do these results vary on Xeon Phi or AMD APU systems? 

•  Additional Algorithm Measurement 
•  Our aforementioned measurements were dense algorithms, what about 

sparse?  
•  SPMV measurements using different storage techniques: CSR, CSC, raw, 

etc 

•  Power measurement Techniques 

•  The component power measurement capabilities are still relatively limited 
•  This is especially true on current/forthcoming memory devices (HBM, HMC) 
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